Visualizing Traps’ Kernels
MGSurvE contains a tool to visualize traps kernels. To use it, we define a dummy landscape object (code available here), and define our traps dictionary with some predefined traps kernels:
tKer = {
0: {
'kernel': srv.exponentialAttractiveness,
'params': {'A': 1, 'k': .01, 's': .3, 'gamma': .975, 'epsilon': 0}
},
1: {
'kernel': srv.exponentialDecay,
'params': {'A': 1, 'b': 0.045}
},
2: {
'kernel': srv.sigmoidDecay,
'params': {'A': 1, 'rate': .175, 'x0': 25}
}
}
And we plot their profiles with the following function:
lnd = srv.Landscape(points, traps=traps, trapsKernels=tKer)
(fig, ax) = plt.subplots(1, 1, figsize=(15, 15), sharey=False)
(fig, ax) = srv.plotTrapsKernels(
fig, ax, lnd,
colors=TCOL, distRange=(0, 100), aspect=.25
)
The full code for this demo can be found here.